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ELECTRON VELOCITY SHEAR INSTABILITY IN THE AURORAL IONOSPHERE

I. Introduction

Electron streams flowing in magnetic fields are a common occurrence in

terrestrial and astrophysical plasmas, e.g., the earth's ionosphere and

magnetosphere [Arnoldy, 1974- Anderson and Vondrak, 1975], and solar flares

[Sturrock, 1974]. These streams have been observed flowing parallel or

perpendicular to the magnetic field with the flow often spatially varying

perpendicular to the magnetic field. It is well know that this flow

configuration is unstable (Chandrasekhar, 1957] and subject to a Kelvin-

Helnholtz-like velocity shear instability. For the ionosphere-magnetospheric

plasma, Webster [1957] suggested the possible connection between small scale

structures in auroral arcs and instabilities arising from electron E x B flows

perzendicular to the magnetic field. However, there is considerable evidence

[Arnold 1981, and references therein] that strong inhomogeneous electron

flows parallel to the geomagnetic field also exist near auroral arcs. To our

knowledge, the instabilities of transverse sheared electron streams flowing

parallel to the cagnetic field has not been fully discussed in a space plasma

physics context.

In the following we present a linear kinetic theory of transverse

velocity sheared electron flows parallel to the magnetic field (Harrison,

1963; Harrison and Strine, 1963; Mikhailovskii and Rukhadze, 1966 Rome and

Briggs, 1972). Our treatment, which includes density gradients, arbitrary

Te/Ti, background ions and electron collisions, is applicable to the

low B (particle pressure/magnetic pressure) weakly ionized auroral ionospheric

plasma. We show that the interface between downward flowing hot electrons and

upward flowing return current cold electrons is unstable to a high frequency

electron velocity shear driven instability. In Section II we derive a general

Manuscript submitted April 13, 1982.
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kinetic theory and present our principal results. In Section III we summarize

our findings and discuss the nonlinear implications of this instability.

II. Theory

A. Physical Mechanism of the Instability

We first present a simple physical picture of the instability driven

by a transversely sheared electron flow along a magnetic field (Rome and

Brigs, 1972). The magnetic field B = B ez is taken to be constant in space

and time. The ions are assumed to form an immobile, homogeneous background,

while the electrons are assumed to have an inhomogeneous flow

velocity o = Vo(x)ez such that V (x) - (x-x ) 3V /x with 3V /ax < O.-oe oe z oe o oe oe

We impose upon this configuration a two-dimensional, perturbed electric field

6E = E yey + dEz ez as shown in Fig. (1). The perturbation force in the z-

direction acting on an electron fluid element at x x0, can be written

6F =,a + 6F
d

ez ez ez

where 6F = - e dE
ez z

d
6Fez m e 6Vex (Voe/8X)

and dV e - c6E /B is the perturbed dE x B drift due to dE . Here, 6Fa is
ex y ~ y ez

the "acceleration" force due to dE which acts to neutralize the charge

dimbalance, while 6F is the "deceleration" force. due to the convection
- ez

term (6V • V)V and opposes Fa when aV /ax < 0. Thus, when 6Fd > VFa theez oe ez ez'

force imbalance on an electron fluid element leads to an enhancement of charge

separation, and hence, instability. For electrostatic fluctuations,

2



d dFezd

dEy IdFz a dVex z

I BF

I a
®6 F~ ez a

dEy dVex dFezd

Xo + x Xo  o -

Voe = -A oe Voe 0 oe -A oe
~Fig. 1 - Schematic drawing illustrating basic physical mechanism of electron velocity

shear instability. The xz-plane lies in the plane of the paper with the y-axis directed
out of the paper. The positive (+) signs represent excess positive charge while the nega-
tive (-) signs indicate negative charge.
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SE= - i k S and 6E - - I k do, where 60 is the electrostatic potential;

this gives the following instability criterion (1/e )3V eo/3x > lk Z/k I. We

prove this criterion rigorously in the next sections.

B. Dispersion Equation

the ions are assumed to have no flow in the z-direction and that the

temperature is taken to be constant. We consider only electrostatic

oscillations and assume perturbed quantities vary as exp[i (k yy+kz z-wt)]

with k 2/k2 << 1. We assume a weakly inhomogeneous plasma (r2  << L2 where
z y Li

rLi is the mean ion Larmor radius and L is the scale length of the density and

velocity gradients) and make use of the local approximation

(k2 >> a2 /ax 2 >> i/L2 ). We assume that f2? << W2 << p 2 so that the ions can be
y I e

considered unmagnetized and the electrons magnetized. Finally, we include

electron collisions in the analysis, i.e.) electron-ion collisions.

The unperturbed electron distribution function is given by

F(v 2 ' v X) =n 2 3/2 -x[(v+ v _ )2V

oe i' I oe e .1. Ie oe e

where v2  v2 -.v 2 v = v and X = x - v y e are constants of motion.
J x y' y e

Here, ve  (2Te/Me)1/2 and £e = eB o/me c are the electron thermal velocity and

cyclotron frequency, respectively. We expand (1) about x = 0 and obtain

v 2F
Foe(V, v11, X) F e (v2  v) - - e (2)

S oex=

4
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B Voe

ky
m ~ m m m m mk z  =E k ll

17N

Voe

Fig. 2 - Basic cartesian geometry used to discuss electron velocity
shear instability. The k-vector shown lies in the yz-plane..The elec-
tron velocity, magnetic field, and z-axis are collinear.
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where

Fm (v2' v)= n (lv2)3/ exp(.-(v+( V V )/v1 (3)
oe 'oe e _oe e I x0

and

a F oe m  3Znn oe 2(vl-V oe)Voe 3nV 1

ax- x=O oe ax + oe (4)v 2  B

e X=O

The equilibrium electron drifts associated with (2) are V = 0,
ox

V - (V2/ae )a I n/ax and Ve = V where Ve = f d3v v F
oy e e oe oz oe -0 - oe

The electron equilibrium pressure tensor is defined as

Poe d3v (v- e)(v - Voe) Foe and is given by

Pe -n T~ oeA(5

Pte o=neT e ( A e)
0 Ae0

where A - (/e );V oe/3x. It is the anisotropy in the pressure tensor that

provides the free anergy to drive the instability.

The unperturbed ion distribution function is assumed to be

F= n -rv)32 exp H(V2 +(v -V )2+v2)Iv2] (6)
o 0 2. x y di z I

1/22
where vi - (2T./mi) is the ion thermal velocity, V. = (v/2S1) a In n lx

is the ion diamagnetic drift velocity and "7. eB /mic Is the ion ciclotro
3. 0 1.

frequency.

The electrostatic dispersion equation is obtained from Poisson's equation

26= 4n(6n - 6ni ) (7)
e

t"' "' | i6



where 60 is the perturbed potential, 6n is the perturbed density of

species a, i.e, Sn. M f d3v 6f , and 6f is the perturbed distribution

function of species a. We define X - (4ne /k2 )6n so that the dispersion

equation is

D(w,k) = I + X + Xe = 0 (8)

We obtain xe by making use of the BGK or Krook model to describe the

effects of electron collisions (Kadomtsev, 1965). That is, we consider

aF 6n
v xBfe e ik- oe 60v(6f e(9

at- Mx mc av e m -av e e n ee e 0

where v represents the electron collision frequency. Following standarde

techniques, i.e., the method of characteristics, we determine Sf from Eqs.

(2) and (9); then integrating over velocity space we finally obtain

2w2  k V de k dV ,
Xe =-kpe lI' e - ) - -- Z ( e) (b ) I x)e k2v2  "e k zv e 8 2 k zP dx e 08eez e z e

e

iv[1+j - (ze) ro(be) ]-1 (10)

z e

where = ( + i -k V )/kzv W2  4wne 2 /m r (b) = exp(-b (b
e' pe 0 e e oe

b = k 2r2 /2 r = ve /S2, I is the modified Bessel function of order
.1 ~e y Le' L

0, Vde - - (ve /2ae) Xn n/ax, Z is the plasma dispersion function

and Z'( ) = dZ/d . The ion response X is simply given by

2w2 .
=23P (I + z Z (Ci)]Xi k2v2

i
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where W2= 4yne2/m i (w - k Vdi)/kvi and Vdi (v2 )3 £n n/ax. Thus

Eqs. (8), (10) and (11) describe electrostatic waves in the presence of a

sheared parallel electron velocity for the frequency regime P. <e 2 < fl2.
a e

C. Analytical Analysis

In order to gain insight into the nature of the electron velocity shear

instability, we analytically solve Eq. (8) in two limiting cases: "cold"

electrons (Te << Tj) and "hot" electron (Te >> Ti). For simplicity, we expand

about x = xo and an consider electron velocity profile such that

Voe = (x-x ) (Voe /;X)xx so that Voe (x=x = 0.
0

1. Cold electrons (Te << T.)

In this limit, the contribution from the ions can be ignored

since Ci << 1 and the dispersion equation can be written

D(w ,k) = 1 + Xe = 0 (12)

In order to simplify Eq. (10) we make the following assumptions:

(W + i v )/k zV << I and k2 r2  << 1. For these conditions we note thate ze "y Le

Z() 1/4 - 1/2$ 2 , Z'(e)- 1/12 and r (be) 1 - k2 r2 /2. We find that

e e a e e o e y Le

12 W2 k k dV W w i
pe pe z z oe _p e_ pe I Zn n] e -Xe 2k ;+ £ x"-  w+i v Q k V '

e (W+iv e 2 y y e e e e
(13)

Making use of Eqs. (12) and (13) we arrive at the following equation

8



D(w,k) (1+o2 )w2 - (iVe- a/k yL ) - A 0 (14)

where w (w+iv e)/Wp, e = ve/wpe a = e e/ e, Ln = (n n n/3x)- ,

A- (kz/k y)(k z/ky + V oe/ e), and Voe = aV oe/ x. The solution of Eq. (14) is

= -I [(iv _o/kyLn)±{(iv ea/kyLn) 2 + 4A(l+a2)}I/ 2 ](1+Y2)-i (15)

We further simplify Eq. (15) by examining the following limits.

a. Collisionless plasma (v = 0)
e

In the collisionless limit (v e= 0), Eq. (15) reduces to

kL + -  + 4A(I+a 2 )} 1/2] (I + a2)- 1 (16)
2 y n k2L2

y n

Instability can occur when

k kz + 1 3W1 02 1(7

y y e a 1+a2 k2L2
y n

In the limit L + -, this instability criterion is identical with that derived

from the simple physical picture presented in Sec. IIA. The important aspect

of Eq. (17) is that the density gradient is a stabilizing influence

(iikhailovskii and Rukhadze, 1966). Moreover, the density gradient is most

effective in stabilizing the instability when a2 >> 1 (i.e., w2  >> f22) anda pe e

kyLn << 1. The latter condition indicates that the density gradient acts to

stabilize long wavelength modes before short wavelength modes, so that a "long

wavelength cut off" should exist in inhomogeneous plasmas. We also note that

the instability attains maximum growth for

g9



k z V :~_-- _2 ! _v (18)
k ax

y e

b. Collisional plasma (v e 0)e

We consider a collisional plasma (v e 0), but neglect the density

gradient for simplicity (Ln + 0). In this limit, Eq. (15) becomes

a) -  f1+ .qA(1+0 2 ) 1/21

= 2 - (19)
2 "2

e

A necessary condition for instability is

k k 1 aVoe
A = kE(-k + -11-.) < 0 (20)

y y e

which is the same condition as Eq (17) for L n +. The growth rate is givenn

by

= r-L_ )1/2 1 +202 for 2 < < 4A(I + 02) (21)

+2 1+a2 e

and
IAI_ _ 2 for 2 >> 4A(I + a2) (22)

.. 1+2 e e

*- eEquation (21) is the weakly collisional limit and Eq. (22) is the strongly

collisional limit. A key parameter in determining the strength of the

instability in a collisional plasma is a - w /2e. In fact, for a2 >> 1 it
pe e

is found that collisions prevent the mode from becoming unstable. However,

for a2 + 0, instability presists, even for a large collision frequency.

10
I
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2. Hot electrons (Te >> Ti)

In this limit the contribution fron the ions cannot be ignored and

the dispersion equation is

D(w,k) - 1 + Xi + Xe (23)

Again, to simplify Eq. (23) and to focus on the role of the ions, we make the

following simplifying assumptions: v = 0, L +, W >> k v k2 r2  << 1
e n ze y Le

and w > k vi. The susceptibilities Xo are now given by

W2  W2 k k 3V= e - .. p - (z .1 oe~
e - pe z ) (24)X e Z 2T

e W y y e

and

W2.

, ___9I (25)Wi 2

so that the dispersion equation is

.2 W2  k2  k av m

1 Re pe i + 1 oe )+ (26)
V2 W2 k2  ky ae x i
e y

or

-4

m
(0 + 02) 2 - (A\ + --e) =0 (27)

M.

Clearly, instability can occur when

k k av m

A " z. 1 oe)< (28)k= k+ ax ) -mq

y y e

i.1



Increased stability is found when finite electron temperature is taken into

account (Harrison, 19631. The influence of the ions is to make the

instability criterion more stringent than the cold electron case,

i.e., A < 0. Physically, this is due to the fact that the ions are no longer

immobile and are able to respond to the perturbation field 6E (see Fig. I)z

Also, Eq. (28) indicates that the instability is easier to excite in "heavy

ion" plasmas.

However, we can show that an instability can be excited even when Eq.

(28) is not satisfied, i.e , A > - m e/mi  In this case it is crucial that

electron resonance terms be retained in Eq. (24), which have been neglected.

We expand the electron Z function as Z(C e ) - i/e - J/ 2 + i7 I/ 2 exp(-c 2 )
ee /;e e

and (~ = /C2 - 1-r/2
anidZ 2 e exp (-C2) so that dispersion equation becomes

e e e e

me 171/2 2W 
_2 e

D(wk) 1+A + e exp(-2) A 0 (30)
2 1 k2v 2  ee

z e

where e w/k v We assume A + me/m > 0 so that

mWr W 1 [ +--a A l] 1/2  (31)

e

where wih f  pi(i + 02) 1/2.  Assuming y << w r it is easily shown that

4

Y W 1/2 pe ; exp(- 2 ) % (1+02)-1 r (32)

k2v2  r
z e

so that instablity can occur when A < 0; the same instability criterion as in

the cold electron case. An important aspect of this instability is that it

has a real frequency associated with it (Eq. (31)), while the other

instabilities discussed are purely growing (i.e., wr = 0) in the absence of a

12



density gradient. We add that, as in the cold electron limit, both a density

gradient and electron collisions have a stabilizing influence on this resonant

electron velocity shear instability.

D. Numerical Results

To better illustrate the various limits presented in the previous

subsection, we present a set of curves which solve Eq. (8) exactly for a broad

range of parameters. The important parameters that are varied are

Te/Ti , kyrLe, r Le/L, Vo/2eL , (3Voe /x = Vo /L), ve/0e and wpe /Q e .. We also

consider an 0+ plasma for these cases, i.e., ni = 16 mp. For applications to

the auroral ionoshere we use parameters typical of regions in and near

discrete aurora! ar-s. The transverse velocity shear for electron flow

parallel to t', geomagnetic field can be approximated

by 13V /3xI z IV /L! -here L is a typical latitudinal arc width
oe

and V = vh - v - -
e difference in parallel streaming velocities between

the hot downward i--ng current carrying electrons (vh) and the upward

flowing cold re: .r7. current electrons (vc). Typical values for the

latitudinal width of discrete arcs are in the range L = 100 m - 10 km [Davis,

1978. For vcV - 10 A/m [Anderson and Vondrak, 1975
1978. Fo vc we take Jl,¢ c c

4 5 -3
and references therein] with nc = 10 - 105 cm giving v = 102 - 103

cm/sec. For vh we consider the field-aligned downward flowing electrons with

9
* energies E = 1 - 10 keV ['rnoldy, 1981] giving vh 10 cm/sec. As a result,

4 -1
4 an estimate for the transverse shear is IV :I j(v - v = 10 secoe "-(h Vc/L

= = 206 se-l

with L = 1 km giving for the parameter IV /QeLI = 10
- 2 where 2 10 "se

0 e e

In Fig. 3 we plot w/wpe vs. T e/T. The solid lines show the growth

rate y/wpe while the dashed lines show the real frequency w r1w pe. The

parameters used are kyr = 0.1, /pe/ = 0.5, e /w = 0,

13



10-1

pe

10-2

10-3- V /QeL =-0.02 Vo/QeL -0.01

- --- -I

10-4I 
I

10- 2 10-1  1 10 102

Te/Ti

Fig. 3 - Plot of w&/Cpe vs. Te/Ti for strong shear (Vo /f2eL = -0.02) and weaker
shear (Vo /92eL = -0.01). Note stabilization for Te/Ti - 1 for weak shear case.

14

-Al



r /Ln = 1.0 x 10- 4  for V /9e L = - 0.01 we choose kz/ky = 0.005, and

for V I eL - - 0.02 we choose kz/k - 0.010.

We first discuss the strong shear case, Vo Ifl eL - - 0.02. We note that

the instability criteria A = (k z/k y) (k z/ky + Vo Ie L) < 0 and

A -! (k /k ) (k /k + V /n L) < - m /mi are satisfied for the parameters

chosen. As expected, a nonresonant instability occurs for the entire range of

Te/Ti considered. Note that the growth rate is slightly smaller for Te/Ti -

102 than for Te/Ti 10- 2. This is due to the stabilizing influence of the

nonresonant ion contribution (Eq. (25)). Also, there is a small real

frequency associated with this mode, wr/wpe < 2 x 10- 4 , which is due to the

density gradient.

The weak shear case, V /a L - 0.01, is chosen such that
o e

A = (k/k) (kz/k + V / L) < 0 but A = (kz/k )(k /k + V / L) > - m/m.

We anticipate a nonresonant instability in the "cold" electron regime (Te <<

Ti) and a resonant instability in the "hot" electron regime (Te >> Ti). This

is clearly illlustrated in Fig. 3. In the limit Te << Ti, a strong

nonresonant instability occurs which asymptotes to a growth rate

ofY/pe = 4.6 x 10-3 in the limit T 0. Also, there is a small realpe 46x nte ii e

frequency associated with this mode due to the density gradient which, for the

most part, has wr/wa < 1.0 x 10-4 for T < Ti.  As Tei + 1, the ions becomepe e Ti AsTI.*1 h osbcm

important and stabilize the mode because of ion Landau damping,

i.e., w - kv. On the other hand, for T >> T the resonant instability
'1e i

described in Sec. II. B. 2 is shown. Associated with this mode is a large

real frequency (Eq. (31)). The growth rate is comparable to, but smaller,

than the nonresonant "cold" electron mode. Again, as Te/T i  1, the

assumptions used to arrive at Eq. (32) break down and the mode is stabilized

by ion Landau damping.

15



In Fig. 4 we plot ym/wpe vs. k rLe for Vo /e L - - 0.01, Wpe/9e - 0.5,

e/Ti - 10-  and 103 , and rLe/L n - 0 and 1.0 x I0-4  Here, y m denotes the

growth rate maximized with respect to k z/ky; typically, k z/ky - 0.005 for the

curves shown. We first discuss the "cold" electron case (Te/T i . 10-3.

Instability extends over a very broad range in ky space from

k yr L 10- 3 to kyrLe 1. The growth rate maximizes for ky rLe 2 0.1.

As kyrLe - 0, the instability is stabilized because of ion Landau damping.

The additional damping due to a density gradient is evident by contrasting

the r Le/Ln = 0 and r Le/L n = 1.0 x 10- 4 curves in the long wavelength

limit (kyrLe << I). The mode is stabilized in the short wavelength

limit (k yrLe > 1) because of finite electron Larmor radius effects.

The siLuation for the resonant instability in the 'hot" electron

regime (Te/Ti = 10 ) is somewhat different In this case the waves are much

more localized in k- space, with growth mostly occurring in the narrow

region kyrLe = 0.1 - 1.0. The growth rate is sharply reduced as kyrLe becomes

small (i.e., k r- < 0.1) because the resonant electron contribution,yLe

proportional to enp(-w2/k 2 v2 ), becomes negligible in this limit. Again,
r z e

for kyrLe > 1, the mode is stabilized because of finite electron Larmor radius

effects.

In Fig. 5 we plot y/ pe vs. v pe for kyrLe = 0.1, k 1ky Y 0.005,

rLe /Ln - 1.0 x 10- , V /S eL = 0.01, T e/Ti = 10 3 and 103, and w pe/P = 0.5 and

2.0. The important features of this figure are the following. First,

electron collisions eventually stabilize the instability regardless of

Te/Ti. Second, electron collisions are much more effective at stabilizing the

mode when w pe/ 2e is large, which is consistent with the analytical analysis

presented in Sec. II. B. 1. Finally, there appears to be a weak collisional

3
instability for the "hot" electron case (Te/Ti - 103) when w pe/ > .

16



10-1

Ym

10-2 _ pe

00

/f

10 - 3 - rLe/ L =0 i/

/
//rLe/ L = 10 -4

1-4 1 / II 1

10 - 4  10 - 3  10- 2 10- 1

kyrLe

Fig. 4 - Plot of - fm /wpe vs, ky rje for Vo/E2eL - - 0.01, w pe/9e = 0.5, Te/Ti = 10 - 3 ,

103, and rLe/L = 0, 1 X 10-4. Note narrowing of region of unstable waves for Te/Ti= = 10 3 .
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5 x 10- 3 -

Te/T- 10-3

10-3 - Cope/Qe = 0.5

Cope

5x 10- 4 -

T
e

-oe 2.0

10-4 5
0 5 10

Ire/O pe(10 - 3 )

Fig. 5 - Graph of y/w vs. Ve/Ope for ky rL = 0.1, k,/ky = 0.005, rL,/L, 10 - 4 ,

Vo/SeL -O- 0.01, TeT i = 10 - 3 , 103 ,pe/e = 0.5, 2. Note reduction in growth
rate for increasing collision frequency.
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III. Summary and Discussion

We have presented a linear, electrostatic, kinetic theory of velocity

sheared electron streams flowing parallel to a magnetic field. For simplicity

we have treated the case where the electron velocity varies transverse to the

direction of the flow. Since a Vlasov analysis has been used, finite Larmor

radius effects and wave-particle resonances have been properly treated. These

are important since (1) we find appreciable wave growth for krLe ( 1, (2)

electron-wave resonances can be a destabilizing influence, and (3) ion-wave

resonances are a stabilizing influence. In addition, we have included an

electron density gradient transverse to the flow direction, background ion

response, and electron collisional effects. Moreover, through numerical

solution of the fundamental dispersion relation, our theory is valid for

arbitrary values of Te/Ti.  Our principal results can be summarized as

follows:

1. For "cold" (T. << Ti ) velocity sheared electron streams, we find a

nonresonant instability when

k k + Voe ) < 0

y y e

We note that a density gradient is stabilizing and provides a long

wavelength cutoff such that the unstable waves are preferentially

excited locally (k2L 2 > 1).

2. For "hot" (Te >> Ti) velocity sheared electron streams, our results

again indicate a nonresonant instability when
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kz z me
+ 1 __ _e <(34)

k 2 ax mky y e

As in the cold electron case, the density gradient exerts a

stabilizing influence. However, we have also found a resonant

(electron-wave) instability that has the same instability condition as

the cold electron case (Eq. (33)).

3. For Te =T except for strong shears, (Eq. (34)), the modes are

stabilized due to ion Landau damping. Ion Landau damping also

stabilizes the long wavelength modes (i.e., kyrLe ) 0) for

T e/Ti * 0 •

4. Electron collisions exert a stabilizing influence independent of

Te/T i .  Collisions are more effective for stabilization

when w /2 > I.

pe e

In the preceeding theoretical development we have assumed that the

unstable modes have high frequencies y > Q. such that the background ions1

cannot execute a gyro oscillation on the instability time scale. Thus, the

ions are assumed unmagnetized. For y ( Q., the ions must be considered

magnetized and the previous analysis is invalid. In this case, other

instabilities, e.g., cyclotron instabilities [Kindel and Kennel, 19721, are

possible. We have shown a posteriori that the condition y > Q has been met

for the parameter regimes studied.

Nonlinear numerical studies of velocity sheared ions flowing parallel to

a magnetic field have recently been performed (Tajima and Leboeuf, 19801.

These simulations indicate classical vortex formation and the production of
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anomalous viscosity resulting in a quasilinear flattening of the initially

sheared velocity profile. We anticipate similar behavior for sheared electron

streams and defer a detailed study of the nonlinear evolution of electron

velocity shear instabilities in space plasmas to a later report.

For application of this theory to the auroral ionosphere, we consider the

interface, usually seen near discrete arcs, between downward flowing high

velocity hot electrons and upward streaming low velocity cold return current

electrons. Many experimental studies of auroral arc structure and dynamics

have been made, particularly rocket and satellite measurements. Kelley and

Carlson [1977] have detected near the edge of an F-region auroral arc,

electrostatic waves with spatial scale sizes less than the measured ambient

velocity shear scale size. These results are not inconsistent with our

findings of a local (k2 L2 >> 1) electrostatic instability due to transverse

sheared electron streams flowing parallel to the geomagnetic field. In

addition, several other investigators (Whalen and llcDiarmid, 1972; Bryant et

al., 1973; Arncldy' et al., 1974] have found that high energy field-aligned

electrons are generally localized near the edges of auroral arcs in regions

separating different plasmas. These electrons have also been found to occur

in bursts. Moreover, electron energy spectra near the edges of auroral arcs

[Bryant et al., 1973 Bryant, 1981 Carlson and Kelley, 1977] often show

structure, i.e., cold low energy electron are intermixed with hot high energy

electrons and vice versa. These features, observed near the edges of auroral

arcs, may be explained by the linear and nonlinear evolution of the parallel

electron velocity shear instability. This can be seen by the following

scenario. The parallel electron velocity shear instability can evolve, in the

nonlinear regime, into vortices which can be described as a turbulent boundary

layer near the edges of the electron flow. The vortices by their very
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nature, will tend to mix and transport hot low density electrons with cold

high density thermal electrons. These vortical structures will convert

kinetic streaming energy into vortical rotational energy and thereby act as a

block near the edges of the electron flow. This blockage can be described as

a "resistivity" and lead to the formation of localized electric fields and

subsequent acceleration. As the vortices grow and expand, the initial

velocity profile will flatten in a quasilinear fashion due to anomalous

viscosity effects [Tajima and Leboeuf, 1980; Iliura and Sato, 1978]. As a

results this "resistivity" will be sporadic and bursty in character as the

velocity sheared profile alternately steepens and flattens. These hypotheses

will be tested in detail in future work.

Since, for conditions typical of discrete F-region auroral arcs, i.e.
L -0 m z/y 1-2, VeeL 0-2

=1-10 km, k /k 10 V Ie L 10 , we find unstable wavelengths

ranging ranging from X = 1 - 100 m, these irregularities could be observed

using radar backscatter methods [Hanuise et al., 1981]. We note that since

collisions are stabilizing, this electron velocity shear instability will be

preferentially excited at high altitudes. In addition, throughout our

theoretical treatnent of this instability, we have ignored beam instabilities

(Dungey and Strangewa 1976; Papadopoulous et al., 1974] and their

interactions with velocity gradient driven modes. Finally, these results may

be applicable to the more diffuse interface between region 1 and 2 current.

systems in the auroral ionosphere [lijima and Potemra, 19761 and to electron

current return current regions in solar flares [Knight and Sturrock, 1977].
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